Evaluation of Prognostic Factors and Adjuvant Chemotherapy in Patients with Small Bowel Adenocarcinoma Who Underwent Curative Resection

PII: S1533-0028(16)30149-9
DOI: 10.1016/j.clcc.2016.08.002
Reference: CLCC 319

To appear in: Clinical Colorectal Cancer

Received Date: 8 June 2016
Revised Date: 2 August 2016
Accepted Date: 18 August 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Evaluation of Prognostic Factors and Adjuvant Chemotherapy in Patients with Small Bowel Adenocarcinoma Who Underwent Curative Resection

Dincer Aydin¹, Mehmet Ali Sendur², Umut Kefeli³, Olcun Umit Unal⁴, Didem Tastekin⁵, Murat Akyol⁶, Eda Tanrikulu⁷, Aydin Ciltas⁸, Basak Bala Ustaalioglu⁹, Mukremin Uysal¹⁰, Onur Esbag¹¹, Dogan Yazilitas¹², Ozgur Tanriverdi¹³, Ahmet Bilici¹⁴, Erkan Arpacı¹⁵, Veli Berk¹⁶, Tarkan Yetisyigit¹⁷, Nuriye Yildirim Ozdemir², Ilhan Oztop³, Ahmet Alacacioğlu⁶, Ozhan Aydin⁹, Melike Ozcelik¹, Emre Yildirim¹, Nur Dinc¹, Mahmut Gumus¹⁸

¹-Department of Medical Oncology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul Turkey
²-Department of Medical Oncology, Numune Education and Research Hospital, Ankara Turkey
³-Department of Medical Oncology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
⁴-Department of Medical Oncology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
⁵-Department of Medical Oncology, Faculty of Medicine, Selcuk University Meram, Konya, Turkey
⁶-Department of Medical Oncology, Faculty of Medicine, Katip Celebi University, Turkey
⁷-Department of Medical Oncology, Faculty of Medicine, Marmara University, Istanbul, Turkey
⁸-Department of Medical Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
⁹-Department of Medical Oncology, Haydarpasa Education and Research Hospital, Istanbul
¹⁰-Department of Medical Oncology, Faculty of Medicine, Kocatepe University, Afyon, Turkey
11-Department of Medical Oncology, Ankara Oncology Education and Research Hospital, Ankara, Turkey

12-Department of Medical Oncology, Konya Education and Research Hospital, Konya, Turkey.

13-Department of Medical Oncology, Faculty of Medicine, Muğla University, Muğla, Turkey

14-Department of Medical Oncology, Faculty of Medicine, Medipol University, İstanbul, Turkey

15-Department of Medical Oncology, Sakarya Education and Research Hospital, Sakarya, Turkey

16-Department of Medical Oncology, Faculty of Medicine, Erciyes University, Kayseri

17-Department of Medical Oncology, Faculty of Medicine Namik Kemal University, Tekirdag, Turkey.

18-Department of Medical Oncology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey

Corresponding author:

Dincer Aydin, MD

Dr. Lutfi Kirdar Kartal Training and Research Hospital

Department of Medical Oncology

e-mail: dinceraydin79@yahoo.com

Phone number: 00905072751746

Fax number: 00902164422947
Micro-Abstract

This is a multicenter study to assess the prognostic factors and adjuvant chemotherapy in patients with small bowel adenocarcinoma (SBA). A total of 78 SBA patients diagnosed with completely resected small bowel adenocarcinoma were involved in the study. Only status of surgical margin was determined to be an independently prognostic factor in SBA patients who underwent curative resection. Neither DFS nor OS was found to be significantly improved by the adjuvant chemotherapy.

ABSTRACT

Background: Small bowel adenocarcinoma (SBA) is a rare tumor of gastrointestinal system with poor prognosis. Since these are rarely encountered tumors, the aim of this multicenter study is evaluation of prognostic factors and adjuvant chemotherapy in patients with curatively-resected SBA. Materials and Methods: A total of 78 SBA patients diagnosed with curatively resected small bowel adenocarcinoma were involved in the retrospective study. Forty-eight patients received one of 3 different chemotherapy regimens whereas 30 patients did not receive any adjuvant treatment. No adjuvant and adjuvant chemotherapy cohorts were matched (1:1) by propensity scores based on the likelihood of receiving chemotherapy or the survival hazard from Cox modeling. OS was compared with Kaplan-Meier estimates. Results: Median age of 78 patients with curatively-resected SBA was 58 and 59% of these were males. According to TNM classification, 8 (10%) of the patients were at stage I, 26 (34%) were at stage II and 44 (56%) were at stage III. Median follow-up duration was 29 months. Three-year median disease-free survival (DFS) and overall survival (OS) were 62.5% and 67%, respectively. In univariate analysis, presence of vascular invasion, perineural invasion, lymph node involvement and presence of positive surgical margin were significant predictors of poor survival. Multivariate analysis showed that the only adverse prognostic factor independently related with OS was the presence of positive surgical margin (HR, 0.37; 95% CI, 0.11-1.26; p=0.01). Neither DFS nor OS was found to be significantly improved by the adjuvant chemotherapy in both matched and unmatched cohorts.
Conclusions: Only status of surgical margin was determined to be an independently prognostic factor in SBA patients who underwent curative resection.

Key Words: adenocarcinoma, adjuvant chemotherapy, prognosis, small bowel.

Introduction

Malignant tumors of small bowel are relatively rare tumors of the gastrointestinal system. Although small bowel constitutes a large part of the gastrointestinal tract length and surface area, only about 3% of all gastrointestinal tumors derive from small bowel. Along with adenocarcinoma, carcinoid tumor, stromal tumor and lymphoma are the most common malignant tumors of the small intestine. Adenocarcinoma account for about 1/3 of small bowel tumors. Small bowel adenocarcinoma (SBA) predominantly arises in duodenum (57-65%) with a decline in frequency towards the distal parts.

The average diagnostic age is between 50 and 70 years and there is a slight male dominance. Along with that the definitive etiologies of small bowel tumors are unknown, various risk factors and predisposing conditions such as genetic diseases which are accompanied by gastrointestinal polyps and chronic inflammatory bowel diseases have been defined.

Symptoms of SBA patients are usually nonspecific with nearly half of the patients present with abdominal pain. As the disease is rarely seen and the signs and symptoms observed are not specific, course of diagnosis is troublesome. Because of delays in recognition of correct diagnosis, about 60% of patients are at stage III-IV when diagnosed. This situation decreases survival and negatively influences the response to treatment. As in most malignancies, early diagnosis and surgical resection are the only chance for cure in small bowel adenocancers. That is to say that whereas 5-year disease-specific survival is 65% in stage I, it decreases up to 4% in stage IV. Along with advanced stage, duodenal primary site, lymph node invasion, pT4 and surgical margin positivity have been described as poor risk factors.
In curatively-resected small bowel adenocancers, recurrence pattern is usually as distant metastasis, rather than as local recurrence. Relapse pattern is the liver, peritoneum, locoregional recurrence and abdominal wall involvement in order of frequency.

Although poor risk factors have been described, data regarding the role of adjuvant chemotherapy and radiotherapy in operated small bowel cancers are limited and insufficient. Because these are rarely seen tumors, there is no prospective study for any adjuvant chemotherapy. In most of the oncology clinics and the participating institutions involved in our study, although there is not a standardized treatment protocol, planning of adjuvant chemotherapy based upon studies regarding adjuvant chemotherapy in colorectal cancers is being carried out. There is a significant space left regarding adjuvant chemotherapy in small bowel adenocarcinoma. We, therefore, aimed to describe clinicopathological features of our patients who are diagnosed with curatively resected small bowel adenocancers and to determine effect of adjuvant chemotherapy on overall survival (OS) and disease-free survival (DFS) and potential prognostic factors.

Material and Methods

One hundred eighteen patients diagnosed with SBA in 18 different institutions from Turkey between dates of August 2003 and May 2013 were evaluated retrospectively. Adenocarcinomas derived from duodenum, ileum and jejunum were included in the study, whereas patients with tumor of ampulla of Vateri and accompanying 2nd malignant neoplasm were excluded. Along with this, patients who were at advanced stage at the time of diagnosis were also excluded. Thus, 78 patients diagnosed with curatively resected SBA were included in the study. Patients were categorized according to whether they received adjuvant chemotherapy or not. Clinical information such as age, gender, Eastern Cooperative Oncology Group (ECOG) performance score of patients, localization of the tumor, margin of resection, histopathological grade, vascular invasion, perineural invasion, lymph node involvement, pT stage, TNM stage, treatments, chemotherapeutic toxicity, status of recurrence, pattern of recurrence and survey have been obtained from patient records. Staging of the patients was performed according to
available pathological, clinical and radiological findings at the time of diagnosis by using the 2010 7th edition of American Joint Committee on Cancer (AJCC) system

Follow-up Schedule

During follow-up of patients, medical histories and physical examinations were carried out once in 3 months in first 2 years, every 6 months in 3-5 years and annually after 5 years. In controls of the patients, along with complete blood counts and biochemistry panels, tumor markers (CEA, CA 19-9) were also evaluated. Chest X-rays and abdominal CT scans were also performed every 3 months in the first year, every 6 months in the second post-operative year and annually thereafter for 5 years.

Statistical Analysis

The data were analyzed to determine the clinical characteristics, treatment patterns, outcomes, and prognostic factors of SBA. Statistical calculations were performed using SPSS 22.0 statistical program (SPSS Inc, Chicago, IL, USA). Descriptive analyses were presented using means and standard deviations for normally distributed variables. The significance of the differences among the means was determined by the Mann–Whitney U test. Differences in the distribution of ordinal variables were evaluated with the chi-squared test or Fisher’s exact test. Survival analysis and curves were compared using the log-rank test by the Kaplan–Meier method. Disease-free survival (DFS) was defined as the time from curative surgery to disease progression or recurrence, or to the date of death or lost in follow-up. Overall survival (OS) was described as the time interval from diagnosis to the date of the patient’s death or lost in follow-up. Univariate and multivariate analyses (Cox proportional hazards model) were used to calculate hazard ratios (HRs) with 95% confidence interval. A two-sided p-value of <0.05 was considered to indicate a statistically significant difference. To minimize selection bias between patients who received adjuvant chemotherapy and who do not, propensity scores were used. No adjuvant and adjuvant chemotherapy cohorts were matched (1:1) by propensity scores based on the likelihood of receiving chemotherapy or the survival hazard from Cox modeling. According to adjustment, which was made with propensity scores 10 patients for each group were
Adjuvant Chemotherapy

Whereas 30 (38%) patients did not receive adjuvant chemotherapy, 48 (62%) patients received one of the 3 different chemotherapy regimens as an adjuvant chemotherapy. Among the patients who were delivered adjuvant chemotherapy, 19 (40%) patients received bolus Leucovorin-5 Fluorouracil (LV-5FU) regimen (5 FU 425 mg/m² plus LV 20 mg/m², each given days 1 to 5, every four weeks), 23 (48%) patients modified FOLFOX 6 regimen (oxaliplatin 85 mg/m² day 1, leucovorin 400 mg total dose over two hours day 1, Fluorouracil 400 mg/m² bolus day 1, followed by 2400 mg/m² over 46 hours, cycled every 14 days) and 6 (12%) patients received Cisplatin-5FU regimen (cisplatin 75 mg/m² day 1, Fluorouracil 750 mg/m² IV continues infusion over 24 hours daily on days 1-4, cycled every 21 days).

Results

Patient Analysis

Median age of 78 patients with curatively resected SBA was 58 (range 18-74) and 59% of these were males. ECOG PS of all patients were 0-1. In 70% of the patients the primary location of the tumor was duodenum, in 18% was jejunum and 10% was ileum. Surgical procedure was wide segmental resection which involves resection of the primary, investing mesentery and lymph nodes, in 59% of patients whereas 41% of patients underwent pancreaticoduodenectomy, all of whom had duodenum-originated tumors. Whereas most of the patients have well- and moderate-differentiated tumors, in half of them vascular or perineural invasion was present. In six (8%) patients R1 surgical margin positivity was present. According to TNM classification, pT stages of patients were; 2 (3%) pT1, 12(15%) pT2, 30 (38%) pT3 and 34(44%) pT4, respectively. Whereas in 34 (44%) of the patients there was no lymph node involvement, in 44 (56%) of the patients (39% N1, 17% N2) lymph node involvement was
present. According to TNM classification, 8 (10%) of the patients were at stage I, 26 (34%) were at stage II and 44 (56%) were at stage 3. Whereas forty-eight (62%) patients received one of 3 different chemotherapy regimens as an adjuvant treatment, 30 (38%) patients did not receive any adjuvant treatment. In the group that received chemotherapy, the median chemotherapy cycles were 6 (range 2-12). Six patients who received adjuvant chemotherapy and had surgical margin positivity received adjuvant radiotherapy (45-50.4 Grey). Clinical and histopathologic features of two groups were balanced except that vascular invasion, perineural invasion, lymph node involvement and number of patients with higher TNM stages were significantly more in the group who received adjuvant chemotherapy compared to the group who did not. Baseline characteristics of the patients are detailed in Table 1. During follow-up relapse occurred in 30 (38%) patients. Relapsing patterns were as liver metastases in 15 patients, peritoneal metastases in 7 patients, local mass in 4 patients, pulmonary metastases in 3 patients and bone metastasis in 1 patient. Whereas curative surgery was performed for none of the patients who developed relapse, 22 of them received palliative chemotherapy (mostly regimens based on platin or irinotecan).

Toxicity

Patients were evaluated in terms of toxicity related to adjuvant chemotherapy. In LV-5FU (n=19), FOLFOX (n=23), Cisplatin-5FU (n=6) regimens, grade 3-4 toxicity was observed in 5, 4 and 2 patients, respectively. Most of the grade 3-4 toxicities were hematological. Hematological toxicities were predominantly neutropenia (72%) and thrombocytopenia (18%). One patient who received cisplatin experienced nephrotoxicity and in two patients who received oxaliplatin, neurotoxicity was developed. Toxicity-related death occurred in none of the chemotherapy regimens. Eighty-five percent of the patients were able to complete the scheduled adjuvant chemotherapy. Dose reductions in 15% of the patients and dose delays in 19% of the patients were carried out.

Survival Analyses in the Unmatched Cohort
A total of 78 patients were analyzed in unmatched cohort. Median follow-up duration was 29 months (range, 6-136 months) and during this period relapse occurred in 30 patients (38%). 2- and 3-year DFS rates were 70.8% and 62.5%, respectively. Twenty-three patients (29%) died and 2- and 3-year OS rates were 85% and 67%, respectively. When patients were stratified according to status of lymph node involvement, 3-year DFS rate was 80% and 55% (p=0.023); 3-year OS rate was 78% and 48%, in the lymph node negative and positive groups, respectively (p=0.018). When they were stratified according to status of surgical margin, in patients with negative surgical margin and with positive surgical margin, DFS rate was found to be as 68% and 0%, respectively (p=0.0001), (Figure 1A) and OS rate was found to be as 73% and 0%, respectively (p=0.0001), (Figure 1B). When they were stratified according to receipt of adjuvant chemotherapy, in patients with no adjuvant chemotherapy (n=30), and adjuvant chemotherapy (n=48), DFS rate was found to be as 65% and 56%, respectively (p=0.481), (Figure 2A) and OS rate was found to be as 79% and 59%, respectively (p=0.259), (Figure 2B). According to univariate analysis, presence of vascular invasion, perineural invasion, lymph node involvement, TNM stage and presence of positive surgical margin were significant predictors of poor survival (Table 2). Multivariate analysis showed that the only adverse prognostic factor independently related with OS was the presence of positive surgical margin (HR, 0.37; 95% CI, 0.11-1.26; p=0.01), (Table 3). Adjuvant chemotherapy was not a significant prognostic predictor for neither DFS nor OS according to unmatched cohort analyses.

Effect of Adjuvant Chemotherapy on Survival in the Propensity Score-Matched Cohort

In order to exclude selection bias, patients were matched 1:1 according to characteristics in unmatched cohort that may affect prognosis. The resulting propensity score-matched cohort included 20 patients: Ten (50%) were in the no adjuvant chemotherapy group and the other half were in the adjuvant group. Intergroup variations in unmatched cohort like vascular invasion, perineural invasion, lymph node involvement and TNM stage were balanced following the matching (table 1). At a median follow-up of 37 months (11-112), the median DFS and OS of propensity matched cohort was 49 months (9-92) and 61 months (22-107), respectively. There wasn’t a significant DFS (Figure 3A) or OS (Figure 3B) advantage for patients who received adjuvant chemotherapy as compared to those who did not. (Median DFS 48 vs. 53 months;
Discussion

Small intestinal carcinoma is a rarely seen tumor. Despite of its increased frequency recently, troublesome challenges still exist for determination of diagnostic methods and treatment. At the time of diagnosis, 2/3 of patients were generally non-metastatic and candidates for potential resection. Surgical resection is the only curative method in patients at early stages. Resection of the primary and investing mesentery achieves surgical clearance of both the primary and the regional nodes at risk for metastases. However, in majority of the patients both pT stage and N stage are advanced, due to the nonspecific symptoms and signs and delay in the course of the diagnosis. Nodal involvement is one of the significant predictors of survival. When nod-negative patients and nod-positive patients were compared in our study, 3-year DFS and OS rates were significantly longer (%78 versus %48 and %80 versus %55, respectively) in nod-negative patients than in nod-positive patients.

Surgical margin was the only independent predictor for OS in the present study. Although results in our study do not support, there are studies in the literature that have determined that pT4, poorly differentiated histology and being originated from duodenum compared to ileum and jejunum are poor prognostic factors.
There is limited number of retrospective studies reporting no advantage of adjuvant chemotherapy for survival23, 24, 26-28. One of the largest retrospective studies regarding this issue belongs to Mayo Clinic26. In this retrospective study, 33 out of 491 patients diagnosed with SBA received 5-fluorouracil-based chemotherapy and 40 patients were given adjuvant chemoradiotherapy. None of these two approaches seemed to provide an additional benefit.

In another study carried out by MD Anderson Cancer Center, 54 patients diagnosed with completely resected SBA were evaluated retrospectively28. In this study, thirty patients (56\%) received adjuvant therapy consisting of systemic chemotherapy with or without radiation in 28 and radiation alone in two patients. In consequence of multivariate analysis, improvement in DFS was provided with adjuvant chemotherapy (p=0.05) whereas it did not provide any statistically significant benefit on overall survival. However, in the adjuvant chemotherapy group, number of patients with lymph node involvement and at advanced stages were significantly more than radiation alone group28.

In another multicenter retrospective study involving 122 patients diagnosed with duodenal adenocarcinoma, adjuvant chemotherapy was given to 34 patients24. No significant difference was found between the patients who received adjuvant chemotherapy and who did not in terms of 5-year survival rates (47\% versus 48\%, respectively). Similarly to our study, in the group of adjuvant chemotherapy, number of patients with lymph node involvement and advanced stages were significantly more compared to the group that did not receive adjuvant chemotherapy. In our study, similarly to 3 aforementioned retrospective studies, there was no significant difference between patients who received adjuvant treatment (n=48, 19 patients
LV-5FU, 23 patients FOLFOX, 6 patients Cisplatin-5 FU) and patients who did not (n=30) in terms of 3-year DFS and OS rates. However, in our study, number of patients with vascular and perineural invasion, lymph node involvement, surgical margin positivity and higher TNM stage were significantly more in the group that received adjuvant chemotherapy compared to the group that did not. Although differences about vascular invasion, perineural invasion, lymph node involvement and TNM stage between groups in unmatched cohort were balanced after matching, adjuvant chemotherapy was still found not to have any prognostic relevance for neither DFS nor OS. This result probably occurred because the number of patients decreased subsequent to matching, particularly the ones with involved lymph nodes who are the leading targets.

More recently, the large retrospective study conducted by Ecker et al. demonstrated that adjuvant chemotherapy significantly improved survival in patients with stage III SBA according to their propensity score-matched analysis. This is not in keeping with previous trials and also our study that found no survival benefit with contribution of adjuvant chemotherapy. Although statistically insignificant they found a trend towards increased survival time for stage II SBA with positive surgical margins and T4 tumor subclassification. Additionally, their analysis reported that duodenal tumors were associated with worse OS compared to jejunoileal counterparts. However our study failed to demonstrate the significance of tumor localisation as a prognostic factor.

Despite the lack of published data supporting a benefit from adjuvant therapy, in majority of oncology clinics in our study, adjuvant therapy is given especially to node-positive completely resected small bowel adenocancers. Rational of adjuvant chemotherapy is basically the MOSAIC study which shows survival advantage of adjuvant chemotherapy given to node-positive colorectal cancers. In oncology clinics participating in our study, for curatively resected, especially node-positive, small intestinal adenocancers, the adjuvant chemotherapy principles applied in colorectal cancers are being carried out. Oxaliplatin-based regimen (ie, FOLFOX) is
preferred in node-positive SBA patients as it is in node-positive colon cancers. LV-5FU or capecitabine can be used as an alternative to oxaliplatin-based regimens in node-negative high-risk patients (high grade, vascular and perineural invasion, pT4, poor lymph node dissection, obstruction, perforation).

SBA is a rare but extremely aggressive disease. Due to rarity and difficulties in diagnosis, studies regarding this issue are limited to retrospective studies carried out with small number of patients. Power of our study is weak due to its non-randomized, retrospective nature with low number of patients and non-optimal homogeneity. Therefore, multicentre prospective studies involving large number of patients are required in order to establish optimal adjuvant treatment and determine histopathological prognostic factors.

Conclusions

The presence of vascular invasion, perineural invasion, lymph node involvement and presence of positive surgical margin were significant predictors of poor survival. The only adverse prognostic factor independently related with OS was the presence of positive surgical margin. Neither DFS nor OS was found to be significantly improved by the adjuvant chemotherapy. However, in our study, number of patients with vascular and perineural invasion, lymph node involvement and higher TNM stage were significantly more in the group that received adjuvant chemotherapy compared to the group that did not.

Clinical Practice Points

- Given the infrequent and challenging diagnosis of SBA, trials on both adjuvant chemotherapy and prognostic factors of this entity are rare and a great need exists in the literature concerning the subject.
- In the current study, positive surgical margin was shown to be an independent adverse prognostic factor for OS. Neither DFS nor OS was found to be significantly improved by the adjuvant chemotherapy.
• Regarding the improvement in OS, our findings provide the importance of targeting surgical strategies to achieve tumor-negative surgical margins in patients with local or locally advanced SBA.

References

Table 1: Baseline characteristics of patients according to unmatched and matched cohorts

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>According to Unmatched Cohort</th>
<th>According to Propensity Score-Matched Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Adjuvant Chemotherapy</td>
<td>Adjuvant Chemotherapy</td>
</tr>
<tr>
<td>n=30 n(%)</td>
<td>n=48 n(%)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>17 (57%)</td>
<td>34 (71%)</td>
</tr>
<tr>
<td>>60</td>
<td>13 (43%)</td>
<td>14 (29%)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>12 (40%)</td>
<td>20 (42%)</td>
</tr>
<tr>
<td>Male</td>
<td>18 (60%)</td>
<td>28 (58%)</td>
</tr>
<tr>
<td>Localisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duodenum</td>
<td>22 (74%)</td>
<td>33 (69%)</td>
</tr>
<tr>
<td>Jejenum+ Ileum</td>
<td>7 (23%)</td>
<td>15 (31%)</td>
</tr>
<tr>
<td>Missing</td>
<td>1(3%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Grade of differentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>8 (27%)</td>
<td>14 (29%)</td>
</tr>
<tr>
<td>Moderate+Poor and not</td>
<td>20 (67%)</td>
<td>28 (59%)</td>
</tr>
<tr>
<td>Missing</td>
<td>2 (6%)</td>
<td>6 (12%)</td>
</tr>
<tr>
<td>Vascular invasion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>20 (67%)</td>
<td>10 (21%)</td>
</tr>
<tr>
<td>Yes</td>
<td>6 (20%)</td>
<td>29 (60%)</td>
</tr>
<tr>
<td>Missing</td>
<td>4 (13%)</td>
<td>9 (19%)</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>20 (73%)</td>
<td>9 (25%)</td>
</tr>
<tr>
<td>Yes</td>
<td>5 (10%)</td>
<td>27 (50%)</td>
</tr>
<tr>
<td>Missing</td>
<td>3 (17%)</td>
<td>12 (25%)</td>
</tr>
<tr>
<td>pT stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT 1-3</td>
<td>25 (83%)</td>
<td>19 (40%)</td>
</tr>
<tr>
<td>pT 4</td>
<td>5 (17%)</td>
<td>29 (60%)</td>
</tr>
<tr>
<td>Lymph node involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>27 (90%)</td>
<td>7 (15%)</td>
</tr>
<tr>
<td>Yes</td>
<td>3 (10%)</td>
<td>41 (85%)</td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>27 (90%)</td>
<td>7 (15%)</td>
</tr>
<tr>
<td>III</td>
<td>3 (10%)</td>
<td>41 (85%)</td>
</tr>
<tr>
<td>Surgical margins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R0</td>
<td>30 (100%)</td>
<td>42 (88%)</td>
</tr>
<tr>
<td>R1</td>
<td>0 (0%)</td>
<td>6 (12%)</td>
</tr>
</tbody>
</table>

R0 microscopic negative margins; R1 microscopic positive margins; RT radiotherapy
Table 2: Univariate analyses of association between covariates, disease-free survival and overall survival

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analyses for DFS</th>
<th>Univariate analyses for OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age (<60 vs. >60)</td>
<td>1.91</td>
<td>0.73-5.41</td>
</tr>
<tr>
<td>Gender (Male vs. female)</td>
<td>0.65</td>
<td>0.27-1.55</td>
</tr>
<tr>
<td>Localisation (Duodenum vs. others)</td>
<td>2.37</td>
<td>0.70-8.04</td>
</tr>
<tr>
<td>Grade of differentiation (Well vs. others)</td>
<td>2.18</td>
<td>0.88-5.38</td>
</tr>
<tr>
<td>Vascular invasion (No vs. yes)</td>
<td>0.16</td>
<td>0.05-0.49</td>
</tr>
<tr>
<td>Perineural invasion (No vs. yes)</td>
<td>0.18</td>
<td>0.06-0.53</td>
</tr>
<tr>
<td>pT stage (pT 1-3 vs. pT4)</td>
<td>0.53</td>
<td>0.23-1.24</td>
</tr>
<tr>
<td>Lymph node involvement (No vs. yes)</td>
<td>0.33</td>
<td>0.13-0.86</td>
</tr>
<tr>
<td>TNM stage (Stage I-II vs. III)</td>
<td>0.33</td>
<td>0.13-0.86</td>
</tr>
<tr>
<td>Surgical margins (R0 vs. R1)</td>
<td>0.10</td>
<td>0.03-0.30</td>
</tr>
<tr>
<td>Adjuvant chemotherapy (Yes vs. no)</td>
<td>0.45</td>
<td>0.13-1.54</td>
</tr>
</tbody>
</table>

HR hazards ratio, CI confidence interval, R0 microscopic negative margins, R1 microscopic positive margins
Table 3: Multivariate analyses of association between covariates, disease-free survival and overall survival.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Multivariate analyses for DFS</th>
<th></th>
<th>Multivariate analyses for OS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p-value</td>
<td>HR</td>
</tr>
<tr>
<td>Vascular invasion (No)</td>
<td>0.31</td>
<td>0.07-1.41</td>
<td>0.13</td>
<td>0.39</td>
</tr>
<tr>
<td>Perineural invasion (No)</td>
<td>0.45</td>
<td>0.08-2.29</td>
<td>0.97</td>
<td>0.41</td>
</tr>
<tr>
<td>Lymph node involvement (No)</td>
<td>0.97</td>
<td>0.23-4.04</td>
<td>0.96</td>
<td>0.93</td>
</tr>
<tr>
<td>Surgical margin (R0)</td>
<td>0.37</td>
<td>0.11-1.26</td>
<td>0.11</td>
<td>0.16</td>
</tr>
</tbody>
</table>

HR hazards ratio, CI confidence interval, R0 microscopic negative margins, R1 microscopic positive margins
Figure 1: The survival curves of DFS (A) and OS (B) according to surgical margins.

Figure 2: The curves of DFS (A) and OS (B) according to adjuvant treatment in the unmatched cohort.

Figure 3: The curves of DFS (A) and OS (B) according to adjuvant chemotherapy in the propensity-matched cohort.
A

Disease-free survival (%)

- No Adjuvant
- Adjuvant

\[p = 0.481 \]

Time (months)

B

Overall survival (%)

- No Adjuvant
- Adjuvant

\[p = 0.259 \]

Time (months)