Torna Makinalarında Güvenlik Önlemleri

Taşlamada Isı ile Yüzeyin Amaçlı Etkilenmesi

Yüzey Paslarının Temizlenmesinde Doğal Kompleks Oluşturucular

Metalografik İnceleme Tekniği

Titanyum ve Alasımlarının Kaynağı II

Asırmaya Karşı Koruyucu Kaplamalar
Metalografik İnceleme Tekniği

Metalografi; metallerin ve alaşımların gözle görülemeyen yapısı ve bileşenlerini optik mikroskop, elektron mikroskopu ve X-ışını tekniklerinden birini kullanarak ortaya çıkan bir bilim dalıdır.

1. Giriş
Bu bilim dalı 1860’lı yıllarda Henry Clifton Sorby’nin bu konuya öncülük eden çalışmalarından sonra özellikle son 40 yılda birçok tekninin geliştirilmesi, metaller, seramikler ile polimerler gibi diğer mühendislik malzemelerinin incelenmesine olanak sağlamıştır.

- Malzemelerin iç yapısını incelemekteki ana amaç;
- Malzemede mevcut fazları, miktarını ve dağılımını,
- Tanı boyutu, şekli ve dağılımı,
- Genel olarak Yapıkusurların (çadak, porozite, segregasyon, kalıntlar v.b) cinsini ve miktarını saptamaktır.

- Düzel bir yüzeye sahip olmalı ve oldukça parlak olmalıdır.

Metalografi, bilimi dai olmanın yanı sıra sanat olma özelliğini de taşır. Bu alanın sanat olma özelliğini, kesit alma, kalıplama, zımaralama, parlatma, dağlama ve fotoğraflık çekimi şeklindeki numune hazırlama tekniğinden kaynaklanır. Bu işlemler dikkatli bir şekilde uygulandığında malzemenin gerçek mikroyapısı ortaya çıkmaktadır.

2. Metalografik Numune Hazırlama İşlem Kademeleri

2.1 Numune Alınması

Numunenin nereden alınacağı belirlendikten sonra, en uygun bir kesici alet ile numune kesilir. Bunlar çeşitli kırma, makaral-

Doğal ve yapay taşların kirlup bir ölçüye getirildikten sonra bir baglayıcı ile birleştirilirlerin soğucu ile edilen kesici takımlar zımpara taşları denir. Abraziv diskli kesme veya zımpara taşı kesici kesinin kalitesi değerlendirilir. Zımpara taşınlarda sert tanecikler olarak doğal ve yapay kristaller kullanılır. Günümüzde sert tanecik malzemeler Al₂O₃, silitium karbür, bor karbür ve elmas kul-

Şekil 1: Takım ile kesilen metalin deformasyonu

Şekil 2: Abraziv diskli kesme makinasi
Tablo 1: Zumba taş ile kasmade ortaya çıkan problemler, muhtemel nedenleri ve çözümleri.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Muhtemel Neden</th>
<th>Çözüm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yanma</td>
<td>Aşınma veya nönume</td>
<td>Soğutma oranının artırılması, kesme basıncının azaltılması, daha yumuşak taş seçilmesi</td>
</tr>
<tr>
<td>Hızlı taş aşması</td>
<td>Taş bağlayıcı ufakalması, hızlı taş aşması</td>
<td>Daha sert taş seçilmesi, kesme basıncının azaltılması</td>
</tr>
<tr>
<td>Şıklık taş kırılması</td>
<td>Değersiz soğutma eğilimi, genel nönume boğulması</td>
<td>Uniform soğutma eğilimi, sert nönume seçilmesi</td>
</tr>
<tr>
<td>Kalınlukta taş döngüsü</td>
<td>Taş yavaşlayarak durma eğilimi</td>
<td>Yumuşak taş seçilmesi, tekrarlı kesme kullanması</td>
</tr>
<tr>
<td>Kasıtlı motoru döngüsü</td>
<td>Kasıtlı kasıtlı bir hıfzı olması</td>
<td>Kasıtlı eğilimli nönume göre öğretilmiş olanlar, nönume boyunun sınırlanılması</td>
</tr>
</tbody>
</table>

2.2. Numunenin Kalıplama

Numune ededikten sonra metalografik inceleme başlar. İlk şekilde numunelerin karakterisasyonu olmak üzere bir sonraki işlem başlaması kalıplandır (bakalite almak). Kalıplama işleminden sonra:

- Tek tip boyutta numuneler yaparak otomatik makinalarının kullanılmasını sağlar ve numunelerin seçilmesini kolaylaştırır.
- Numunenin yüzeyine destek olunarak ince tabakaların incelemesi sağlanır.
- Dağılımlı ve gözenekli numunenin dört bir yandan destek verilir.
- Numunelerin seçilmesi, parlatılması ve dağıtılmaları sırasında elle tutulması sağlanır ve dokunulanlar zarar görmelerine engel olunur.

- Çok fazla girintili-çıkıntılu numunelerde, zumba işlemi sırasında zumba taşın prizlerinin parçaları griinti-çıkıntıları yerine dolması engellir. Bu da hatalı işlem yaparak daha hassas yüzey ededilemesini sağlar.

Numunenin kalıplamasında bazı mekanik kalıplama atletleri (mekanik kelepeçler) kullanılmaktadır. (Şekil 4) Bu tür kalıplama yönteminde numune ve kelepeç, başlangıçta numune hâzırlama aşamasında benzer mekanik ve kimyasal özelliklere sahip

Numuneyi kalıplama işlemi- de sıcak ve soğuk kalıplama yöntemlerinden birisi uygulanabilir.

Termoplastik malzemeler de granul halinde bulunurlar ve ısı ile yuvarlar ancak termoset malzeme ve olusumun akış genel olarak sırtlaştırılmaktadır. Termoplastik malzeme ve olusumun akış genel olarak sırtlaştırıldıklarından de bir daha yuvarlamazlar.

Şekil 4: Çeşitli kelepçe şekilleri: (a) tip koş, (b) ince sac, (c) tutul, (d) düzeltsz parça, (e) teller

Yüzey

Yan görünüm

Numune

Ara parça

Sabitlayıcı

Şekil 5: Sıcak kalıplama yönteminde kullanılan pres (balkalite alma presi)
2.3. Zimparlama ve Parlatma

Başlıca bir şekilde parlatılmış yüzeye sahip numune elde etmek için kaba ve ince zimparlama ilk adımdır. Parlatma ile birlikte zimparlama işlemi, numune alma sırasında değişikliğe uğramış olan yüzey malzemeleri kalınlıkta numunenin gerçek yapısını ortaya çıkarmak. Bu işlemler, çekildiğiğinde kayıp olan tabakayı etkili bir şekilde kabadan inceye doğru birkaç kademe yapılmaktadır. Kaba zimparlama ile 10-100 μm ince zimparlama ile yaklaşık 1 μm yüzey pürüzlüğü elde edilir.

2.3.1. Mekanik Hazırlama

Mekanik hazırlama, talap kalırdan numine benzer olarak abrazif tanecler ile yüzey malzemelerinin kalınlaması esasına dayanır. Mekanik hazırlama kaba ve ince zimparlama kaba ve son parlatma işlemlerini içerir. Zimparlama işlemlerinde abrazif tanecler zimpara sağlar ve disk üzerine sıkıştırılmış edilmişleridir. (Şekil 7)

Kaba zimparlama kademelerinin amacı, bir sonraki zimparlama ve parlatma kademeleri için gerekli düz yüzeyi elde etmektir. Bu işlemede numune önce zimpara şarj edilir. Boyali numune deki çapaklar ve numuneği kesen iletici ortadan kaldırmış olur. Da hü sonra 80 ve 150 no'lu zimpara kağıtlar ile zimparlanır.

Kaba ve son parlatmanın her iki kademelerde de numunenin gerçek yapısını ortaya çıkaran çizikçiler, çekildiğiğinde ugramamış olduğu paralık bir yüzeye ortaya çıkaran ince zimparalamada ise ortaya çıkan yapısal bazı kaldırılır. Genellikle bu kademede kullanılan doğrultular sırayla α altınına (0, 15 - 0, 3 μm) ve β altınına (0, 05 μm)dır. Her ikisi de damıtım su ile süspansiyon şeklinde kullanılır. (Şekil 8). Numune parlatma çarpanı tutulur ve zaman zaman alınına soluşyonu parlatma kumaşını tabi edilir. Parlatma kumaşının nem miktarına dikkat edilidir. Minimum nem miktarı, numunenin parlatma çarpanı uzaklaştırıldığında hava 1-5 saniye içerisinde hemen kurumuna karşılijk gelir. Nem miktarının daha az olması, numune yüzeyinde lekelemeleri yol açar. Bu nedenle parlatma kumaşının kurulumu meydana gelir. Nem miktarı için de parlatma süresini uzatır ve oyuklanmaya yol açar.

Parlatma işlemi otomatik olarak (Şekil 9) yapmanın yanında çaplan 8-10 inç olan ve birkaç taneli masa üzerine testbir edilerek beraberinde bir parlatma ünitesi meydana getirilen sistem parlatma çarptır. Parlatma çarpanın hızları 150-350 d/dak arasında değiştirilir. Çarpanların üzerine çadır bezi, sert çuha, kadi-
ôlar olarak gerçekleştirmenin yanı sıra kaba ve son parlatma işlem kademesinin yapılmadığı elektrolit parlatma çeklinde bir diğer yöntem de uygulanmaktadır. Elektrolitik parlatma yönteminde parlatma lacak malzeme (+) kutup oltakta ve bir elektrolit içerisinde daldırılmaktadır ve elektrik devresini tamamlamak üzere bir katod sağlanmakta ve böylece sistem oluşturulmaktadır. Elektrolit parlatma işlemi sırasında, numune üzerinde ince bir tabakanın meydana gelmesi ve bu tabakanın numune yüzeyindeki çukur-çukurlar doldurulması ve yüksek noktaların tahrip edilerek yüzeyin yavaş yavaş düzgün hale gelmesi bu işlemin esasıdır. İşlem sonunda yüzeydeki çok ince kazıntı ve çikizler ortadan kalkar ve aynı gibi parlat parlayıcı yüzey ortaya çıkar. En çok kullanılan elektrolitler peroksid asit, asetik asit, 10% etanol, 20% asit, ortofosforik asit ve sülfür asit karışımlarından emiyet duyarlı olmaktadır. Uygulanan gerilimler 1-1200 V, sıcaklık 6-90°C ve parlatma süresi 15-180 dakikadır. Elektrolit parlatma işleminde numune- deki metalik olmayan kalınların elektrolitik ve kimsal reaksiyonla girmesi sonucu kırışkan veya tamamen ortadan kalkması yöntemin olumuz olarak öne çıkartılır.

2.3.2. Zımparalama ve Parlatma Kademesinde Kullanılan Aşındırıcılar
Metabolik hazırlamada zımparalama ve parlatma kademesinin de en çok kullanılan abrazifler silisyum karbür ve elmasdır. Abraziflerin ötesi, kaba zımparalama kademesinde taş şekline ve bazı özel parlatma uygulamalarında alınma şeklinde kullanılmaktadır. Tablo 2'de metabolik hazırlamada kullanılan aşındırıcılar gösterilmiştir.

İyi bir abrazif için en önemli özellik kesme kahribiyetidir. Abrazif tanecikleri sert ve keskin olmalı ve bu özelliğini kullanım ömrü boyunca devam etmeli- di. İyi bir kesme kahribi, başlangıç bir uygulama için en önemli koşul.

2.3.3 Dağılama

Dağılama işlemini dağılama aşırının numune yüzeyine uygulanmış şekli ve süresine bağlı olarak edilmesi gerekir. Genelde numune yüzeyinin dağılama ayırana batırılmış bir pampuka silin-
Tablo 2. - Metalografide kullanılan aşındırcılar

Akrozitler	Uygulama	Kullanılmış Biji
Elmisa C	Kesme, zıparalama,	
parlama	Kesme toşu, zıparalama	
dikiş, pasko, sнопSanlıyon		
Bor Karbür (B2C)	Son parlama	Toz
Kâbit Bor Nitro (CBN)	Kesme	Kesme toşu
Silisyum Karbür (SiC)	Kesme, son parlama,	
zıparalama	Kesme toşu, toz	
zıparalama toşu, koğalt		
Zirkonyum Okali (Z2O3)	Zıparalama	Zıparalama
koğalt		
Alüminyum okali (Al2O3)	Kesme, zıparalama	
parlama	Kesme toşu, zıparalama	
toşu, sнопSanlıyon		
Alüminum, kâbit		
Alüminum, helezonal		
Silisyum Okali (SiO2)	Son parlama	SнопSanlıyon

Şekil 10. - Tane sınırlarının işaretlenmesi (a) ve mikroskopta görüldü (b)

Doğu alan gibi kaynaviş

- Tane sınırların işaretlenmesi (a) ve mikroskopta görüldü (b)

- Bazı tür malzemelerde mikroyapı teşbitinde kimyasal dağılma ayrıntılardan yeterli sonuç vermemeyebilir. Dolayısı ile, bu gibi özel durumlarda elektronik dağılama yöntemi uygulanabilir (Şekil 11). Buğün elektronik dağılama amaci
na döndük bazı cihazlar geliştirilmiştir ve çok basit ekipmanlar ile de elektronik dağılama yapmak ve mikroyapı-

- "Metalographic Etching", ASM, Metals Park, Ohio, 1978
- "Metalographic Sample Preparation", Preparation Guide, Siemens, Denmark
- "Metalographi", ITU Kütüphanesi, 1989
- "Computers in Materials Science", C. C. McMeeking, 1995
- "Metallography and Microstructures", N