Letter to the editor

In page 149 step 4, the Authors indicate that substituting (2.4) along with Eq (2.5) into Eq (2.3) and collecting all the coefficients of \(z^i(\xi) \) \((i = 0, 1, 2, \ldots)\). then setting these coefficients to zero, yield a set of algebraic equations, which can be solved by using the maple or mathematica ... Even though the Authors obtain a polynomial of \(z \) in their equation, the following example shows that the \(z \) terms appear when the given equation includes first order derivatives.

Example. Suppose we consider the Newell-whitehead equation which reads

\[u_t = u_{xx} + au - bu^3. \]

If we look for traveling form \(u(x, t) = u(\xi) \) and \(\xi = x - ct \) where \(c \) is the velocity of propagation, by using \(\xi \) we obtain the following nonlinear ordinary differential equation.

\[u'' + cu' + au - bu^3 = 0 \] (1)

Homogeneous balance between \(u'' \) and \(u^3 \) gives \(N = 1 \). Therefore

The Authors seek solutions as the following

\[u(\xi) = g_0 + g_1 \left(\frac{z(\xi)}{1 + z^2(\xi)} \right) + f_1 \left(\frac{1 - z^2(\xi)}{1 + z^2(\xi)} \right) \]

where \(g_0, g_1 \) and \(f_1 \) are constants to be determined such that \(g_1 \neq 0 \) or \(f_1 \neq 0 \)

\[u' = g_1 \left(\frac{z'(1 - z^2)}{(1 + z^2)^2} \right) - f_1 \left(\frac{4z'z}{(1 + z^2)^2} \right) \]

(2)

If we substitute \(u', u'', u \) and \(u^3 \) into Eq(1), then we get the polynomial of \(z'z^j \) such that \(i = 0, 1; j = 0, 1, 2, \ldots \) Therefore Step 4 needs to be changed as above.

Nevin Pamuk*
Kocaeli Vocational High School, University of Kocaeli, Kullar, 41300, Kocaeli, TURKEY
E-mail address: npamuk@kocaeli.edu.tr, npamuk66@gmail.com

Received 16 January 2016
Revised 19 March 2016
Accepted 21 March 2016

http://dx.doi.org/10.1016/j.chaos.2016.03.028
0960-0779/© 2016 Elsevier Ltd. All rights reserved.