The influences of worn shock absorber on ABS braking performance on rough road

Hakan Koylu* and Ali Cinar

Department of Automotive Engineering Technology,
Kocaeli University,
TR-41380 Izmit, Turkey
E-mail: hkoylu@kocaeli.edu.tr
E-mail: alicinar@kocaeli.edu.tr
*Corresponding author

Abstract: In this study, the influence of the deteriorations occurring in damping capacity of the shock absorber on the braking performance of Anti-Lock Brake System (ABS) was experimentally investigated. For this, ABS tests were conducted on the rough road, which has μ-split and slippery surface by using worn and new shock absorbers. The results show that when ABS is activated, the brake pressure fluctuations are affected by the changes in shock absorber damping capacity. Accordingly, it is determined that the braking performance is deteriorated by both road surfaces with worn shock absorbers. The μ-split rough road condition with new shock absorber improves braking performance, whereas the slippery road condition makes this braking performance much worse.

Keywords: ABS; anti-lock brake system; suspension system; worn shock absorber; rough road.

Biographical notes: Hakan Koylu, PhD, is a Research Assistant at the Department of Automotive Engineering Technology in Kocaeli University. He has worked on projects related to vehicle dynamics funded by Tubitak (The Scientific and Technological Research Council of Turkey) as an Assistant Researcher. His research areas of interest include the performance of the suspension, brake, steering and power train systems.

Ali Cinar is an Assistant Professor at the Department of Automotive Engineering Technology in Kocaeli University. He teaches undergraduate and graduate level courses related to the dynamics of mechanical systems, vehicle mechanics and engine dynamics. He has worked in projects related to vehicle system dynamics funded by Tubitak (The Scientific and Technological Research Council of Turkey) as a Project Manager. His research areas of interest include the vehicle and engine system dynamics.