Türk Kalıp Sektöründe Bir Başarı Hikayesi: Yıldız Kalıp

Kalıp Sektörü Kalıp Zirvesinde Buluştu

Asya ile Avrupayı Birleştiren Fuar "Kalıp Avrasya Bursa"

Kalıp Çeliği ve Isıl İşleminde 55 Yıllık Deneyim

KORKMAZ ÇELİK
"değer katar"
Çeliklerde Karbon İçeriği ve Soğutma Ortamına Bağlı Olarak Mikroyapı ve Mekanik Özellikle Değişimler

Şadi Karagoz, Ş. Hakan Atupek
Kocaeli Üniversitesi, Metalurji Ve Metal Mühendisliği Bölümü, Umuttepe Yerleşkesi, 41380 Kocaeli

ÖZET

Demir esaslı malzemeler arasında çelikler sahip olduklarını yüksek mekanik özelliklerinden dolayı yaygın olarak kullanılır. Çelik için önemli bir alanı oluşturan karbon çelikin göze mikroyapısına ve dolayısıyla mekanik özelliklerini soğutma ortamına bağlı olarak etkilemektedir. Yan manul kültürlerden taşılı işlem ile makina parçası üretimdeki sonra serbestleştirerek bainitik/temperlenmiş martensitik konuma getirilir ve bu konumda gerekli mukavemet ve sertlik özelliklerine kavuşur. Bu işlemın sıcaklık ve zaman verilmesi ise mukavemeti, sertliği ve eriyiciye karşı dayanıklılığı artırır. Bu nedenle son yıllarda yan manul malzemenin direk sertleştirilmesi geliştirmelerin çok çeken bir alan olmuştur. Bu çalışmadan yan manul yuvarlak kültüklere de direk sertleştirme etkinliğinin incelenmesi için % 0.3 ve % 0.5 karbon içeriği sahip düşük karbonlu çelikler tipik ısıtma ve soğutma oranlarında farklı ortamlarda soğutulmuştur. Efekte edilen değişik soğuma hızlarında mikroyapı ve mekanik özellikleri (sertlik) değerlerini incelenmiştir.

Anahtar Kelimeler: Alışım, Isıl İşlem, Direkt suverme, Mikroyapı, Mikrosertlik

Changes On Microstructure And Mechanical Property Depending On Carbon Content And Cooling Media In Steels

ABSTRACT

Steels among ferrous based materials are commonly used due to their high mechanical properties. Carbon, which is an important alloying element, affects microstructure and also mechanical properties of steels depending on cooling media. Usually machine parts are manufactured by machining of blocks as semi product and then they are hardened so that their microstructures become bainitic/martensitic by hardening. During this operation, internal stresses unfortunately occur due to cooling differences on cross section and centre-surface of the machine part and cracks are formed which result in catastrophic failure. Consequently, direct hardening of the semi-product is developed which will eliminate the hardening processing afterwards. In this study, low carbon alloyed steels having % 0.3 and % 0.5C were cooled in different media after typical austenitization to examine the effect of direct quenching on semi product circular blocks. Changes in microstructure and mechanical properties (e.g., hardness) of steels were examined in different cooling rates.

Keywords: Alloy, Heat Treatment, Direct hardening, Microstructure, Microhardness

Giriş


Demire karbon eklemek çelişek olumsuzmak için yeterlidir. Bununla birlikte çelik çok geniş bir kompleks bileşenler tarafından kapayayan geniş bir termir.נקה 0.1-0.2 (yukarıdaki atomi-0.5-1.0) gibi küçük bir karbon kontrasyonunun da olduğu demiredinde büyük bir serbestleştirmeye etkisi sağırlıdır. Kok körünüşüne geçişte tıktan demir katı hal difüzyonuya bir karbonu kalsıma absorbe edebildiği için bu etki 2500 yıldan beri demireden kullanılmaktadır. Karbonun demir içerisinde absorsiyonunun olduğu yuvarlak bir metal çok güçlü ve çelik zaten çok tek bir başlı olduğu dönüştümlerine dair detaylı proses incelemesi ancak çok hızlı olabileceği yüzden yapılabilir [3].

128 Mart - Nisan 2009
Demir kafesine yeten karbon ilavesi ile mekânik özellikleri saf demirde göre çok iyi olan çelginin eldesi mümkündür. Bu açıdan bakıldığında çelik için ana alamın elementi karbon olup bu elementmekavet, tokul, sütunik gibi mekânik özellikleri ile kaynaklanabilirlik gibi iki nedenle işlemelerin parametrelerini hızlı bir şekilde belirleyebilir. Çeşitli 1 ölçüleri mikropiyapların sertlik ve derinlikteki değişiklikleri karbon içeriğinin bir fonksiyonu olarak göstermektedir. Sertlik ölçüleri üzerinde bireysel carpan olup genellikle makveyette dubl. sütunik ve tokul ile de ters orantılı olarak değişmektedir. Sertlik-karbon ilişkisi Şekil 1'de çizgiler ile gösterilmesi daha bir bünü ile gösterilmesi fayda vardır. Çünkü veri mikropiyayı çok fazla sayılır sertlik ve derinlikteki değişimlerden neden olabilir. Örneğin, dışk demir karbonu ferritik bir mikropiyapun makveyetine boyunca oldukça hızlı bir mikropiyapın makveyetesi ise sementit ve ferritin lameller arasında mafesefnine karşı hassasştır [4].

Şekil 1. Çelik içi farklı mikropiyaplar için karbonun bir fonksiyonu olarak sertlik. Kesikli çiğl ile işaretlenen olan kalınlı öntem etkisini göstermektedir.


2. DeneySEL ÇalışMa

Deneysel çalışmanın 16 mm kalınık ve 15 cm uzunluğuna numuneler hazırlanmış olup 1145°C sıcaklıkta 40 dakika çılgınleştirilen sonra farklı ortamlarda soğutulmuştur. Deneysel çeliğin bileşenleri Tablo 1'de verilmiştir. Soğutma ortamlarına ekit bilgiler ise Tablo 2'de sunulmuştur. Tüm numuneler süt içkem ve soğutma sonrasında metallografik incelemeleri yapılabilmek için 120, 320, 600, 800 ve 1000 no.lu zırparadardan geçirilmiş 3 mm'lık elmasa nahi olarak parlatılmıştır. Yapılan bileşenlerin gösterenmesi açısından %3 lik nital çözelti (HNOS + %97 alkil) ile dağlanmıştır. Mikropiyaplar ZEISS Axiosicht Vario marka ışık mikropiyapısı ile incelemesi olup mikroetkileyecek. Dışk allinkplain çeliklerinde de soğuma koşullarında yüksek sıcaklık fazalı olunan öntem etkisi olarak ferritik (γ→α) ve sütunik bağlamında bir ferritik perlitik dönüşüm (γ→α+Fe₃C) sağlanmaktadır. Alamlanma ile birlikte aşanı sütunik koşullarında de geçiş reaksiyonlarının (ferritik veya perlitik dönüşüm) gerçekleşme ve böylelikle de çeşitli dönüşüm türlerini olan iyonların bainit ve martensit oluşumun teşviklendirmektedir. Bu durumda çeliğin serbestleştirilmişine artışı kaçınılmazdır. Şekil 2'de %0.3 karbonlu çelinin öntemleme sonrasında farklı ortamlarda soğutulması ve edile edilen mikropiyapların verilmiştir. Şekil 2'den havanın etkisi altında çelik soğutma hızını bir sonrkeyi durulduğu için ferritik tür makinotlar yeterli perlitik yapının var olduğunu aksiaştır. Mikropiyapda giriği öz verim ferrit alanlarının daha kısa kontrast alınınca ise perlit yapıyı göstermektedir. Baskılı hava (%86 Ar içerdiği) nadanı soğutmadan ise hava ortamına bazıları olarak ferritik-perlitik bir mikropiyap oluşmuştur (Şekil 2b). Bir miktar alanlı soğuma etkilesini bağlı olarak γ→α dönüşümune yakın γ→α+Fe₃C dönüşümü gerçekleşen olup makinotları içi değil olan kayanlık göstermektedir. Yağ ortamında sonucu olan olanın makinotları %100 olarak uyanmıştır. (Görünüm 2d). Soğuma oranında soğutma hızını ve bainit ve martensit oluşunun teşviklendirilmiş.
Şekil 2. %0.3 karbonlu deneysel çelikin farklı soğutum ortamları sonucu sahip olduğu mikroyapılar. Soğutma ortamları: (a) Hava (b) Arгон (c) Yüksek (d) Su

Şekil 3. %0.5 karbonlu deneysel çelikin farklı soğutum ortamları sonucu sahip olduğu mikroyapılar. Soğutma ortamları: (a) Hava (b) Arargon (c) Yüksek (d) Su

Şekil 3'de ise %0.5 karbonlu çelikin farklı soğutum hızlarında oluştuğdu mikroyapılar verilmistiir. Karbon oranındaki artış sağlı olarak yavaşsa dönüşümün ürünlerinde karbona zengin fazların miktarının artışa karşıdaşmaktadır. Düşük bir karbon çözünürlüğünde sahip ferrite kiyasla özellikle etkileyen dönüşümün sahası en yüksek. Şekil 3'de hava ortamında soğutma hızın katmanındaki artış bir diğer beklenen olgudur. Bu durumda ferritik matriksin % 0.3 karbonu çelikin kıyaslada azalma teorik olarak da mümkündür. Şekil 3'de hava ortamında soğutma hızının katmanıken iş yapısı sunulmuştur. Yaptırma bastığından %0.5 ferritin-feritin dönüşümünün gerçekleşmesi olup azalan sayısalla birlikte perlitik dönüşüm gerçekleşmiştir. Onıtmaktadır ferrit hiç geçerli取暖 섬식이나 백화래기이, 귀중한 이전 실험을 통해 입니다. 백화래기이 bir ferrit yapısı olarak Şekil 3'de da gözlenmiştir. Yine bazı hava ortamında soğutunun katmanı %0.5 karbonlu çelikin hava ortamında soğutulmuş çelikin kıyaslada benzer bir mikroyapısa sahip olduğu gözlenen olup pakavaryi + eşeksiyi onıtktoid ferritin yanan da ince perlitik alanlarndan oluşmuştur (Şekil 3b). Bu durumda ikiçeyin yapısı bağlı olarak sertik artışın beklenmesi gerekmemektedir. Şekil 3'de ise ya ortamında soğutma sırasında iyi kıyaslarda çok ince bir bimett karakteristigi sahip olduğu önemlidir. Yanı diğer tane sunulardan daha çok kıyaslarda daha bir bimett karakteristigi sahip olduğu önemlidir. Şekil 3'de de görüldüğü gibi etkin bir soğutma ortamı olan su verme ile soğutma oranında martenzitik bir yapıyla endesiz sizi konunur.

Farklı karbon ve soğutma ortam koşullarına bağlı olarak çelik içi dönüştürünleri ve mikrotarda değişiklikler kaçınılmazdır. Gerek % 0.3 karbon ve % 0.5 karbon içeriği deneysel çeliklerde öncelikle karbonun bir fonksiyona olarak özellikle sementite etkilemiştir. Bu da malzemelerin mukavemet kazanmasını artık sağlamaktadır. Tüm bunların dışında soğutma ortam farkındalığı çok yakın denge ve denge dışı dönüştürünlerine kavuşmasına neden olmuştur ve beraberinde daha ince bir yapıştır.


Teşekkür

Yazarlar çalışmaya olan katkılarından dolayı Müth. Tevfik Cem İpekçi ve görevli olunan Coşkun Haddeccilik Metal San. ve Tic. AŞ'ın sahiplerine teşekkürlerini sunar.

Kaynaklar